Answer with Explanation:
Let the price of a saree and a shirt be Rs. x and Rs. y respectively.
Then, 2x + 4y = 1600 .... (i)
and x + 6y = 1600 .... (ii)
Divide equation (i) by 2, we get the below equation.
=> x + 2y = 800. --- (iii)
Now subtract (iii) from (ii)
x + 6y = 1600 (-)
x + 2y = 800
-------------------
4y = 800
-------------------
Therefore, y = 200.
Now apply value of y in (iii)
=> x + 2 x 200 = 800
=> x + 400 = 800
Therefore x = 400
Solving (i) and (ii) we get x = 400, y = 200.
Cost of 12 shirts = Rs. (12 x 200) = Rs. 2400.
Let the price of a saree and a shirt be Rs. x and Rs. y respectively.
Then, 2x + 4y = 1600 .... (i)
and x + 6y = 1600 .... (ii)
Divide equation (i) by 2, we get the below equation.
=> x + 2y = 800. --- (iii)
Now subtract (iii) from (ii)
x + 6y = 1600 (-)
x + 2y = 800
-------------------
4y = 800
-------------------
Therefore, y = 200.
Now apply value of y in (iii)
=> x + 2 x 200 = 800
=> x + 400 = 800
Therefore x = 400
Solving (i) and (ii) we get x = 400, y = 200.
Cost of 12 shirts = Rs. (12 x 200) = Rs. 2400.